Some Attention Learning “Biases” in Adaptive Network Models of Categorization

نویسندگان

  • Toshihiko Matsuka
  • James E. Corter
  • Arthur B. Markman
چکیده

In two simulation studies, we compare the attention learning predictions of three well-known adaptive network models of category learning: ALCOVE, RASHNL, and SUSTAIN. The simulation studies use novel stimulus structures designed to explore the effects of predictor diagnosticity and independence, and differentiate the models regarding their tendencies to learn simple rules versus exemplar-based representations for categories. An interesting phenomenon is described in which the models (especially SUSTAIN and RASHNL) learn to attend to a completely nondiagnostic constant dimension.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Time series forecasting of Bitcoin price based on ARIMA and machine learning approaches

Bitcoin as the current leader in cryptocurrencies is a new asset class receiving significant attention in the financial and investment community and presents an interesting time series prediction problem. In this paper, some forecasting models based on classical like ARIMA and machine learning approaches including Kriging, Artificial Neural Network (ANN), Bayesian method, Support Vector Machine...

متن کامل

Rice Classification and Quality Detection Based on Sparse Coding Technique

Classification of various rice types and determination of its quality is a major issue in the scientific and commercial fields associated with modern agriculture. In recent years, various image processing techniques are used to identify different types of agricultural products. There are also various color and texture-based features in order to achieve the desired results in this area. In this ...

متن کامل

Modeling Category Learning with Stochastic Optimization Methods

Many neural network (NN) models of categorization (e.g., ALCOVE) use a gradient algorithm for learning. These methods have been successful in reproducing group learning curves, but tend to underpredict variability in individuallevel data, particularly for attention allocation measures (Matsuka, 2002). In addition, many recent models of categorization have been criticized for not being able to r...

متن کامل

Adaptive categorization of ART networks in robot behavior learning using game-theoretic formulation

Adaptive Resonance Theory (ART) networks are employed in robot behavior learning. Two of the difficulties in online robot behavior learning, namely, (1) exponential memory increases with time, (2) difficulty for operators to specify learning tasks accuracy and control learning attention before learning. In order to remedy the aforementioned difficulties, an adaptive categorization mechanism is ...

متن کامل

Cystoscopy Image Classication Using Deep Convolutional Neural Networks

In the past three decades, the use of smart methods in medical diagnostic systems has attractedthe attention of many researchers. However, no smart activity has been provided in the eld ofmedical image processing for diagnosis of bladder cancer through cystoscopy images despite the highprevalence in the world. In this paper, two well-known convolutional neural networks (CNNs) ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010